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This paper answers the question raised in the title of this paper and shows that it is not true for systems in which the

damping matrix is indefinite. It introduces a new paradigm in the theory of linear stability that gyroscopically

stabilized unstable potential systems can be made stable, and even exponentially stable, by the addition of linear

damping. Conceptually, the paper also points to a practical methodology for adding damping to such gyroscopically

stabilized potential systems to render them exponentially stable. The methodology involves the simultaneous use of

both dissipative damping or negative velocity feedback, andpositive velocity feedback. Themethodology is illustrated

in detail on two-degree-of-freedom gyroscopically stabilized potential systems. In-depth stability analysis of such

systems is provided. It is shown that they can always be made exponentially stable by using an uncountably infinite

number of appropriate indefinite damping matrices. A connected region is proved to exist in the space of indefinite

dampingmatrices forwhich suchdampedgyroscopically stabilized systemsare guaranteed to be exponentially stable,

and this region of exponential stability is analytically delineated. Numerical studies are provided to corroborate the

analytical results.

Nomenclature

a1; a2; a3; a4 = coefficients of characteristic polynomial
�a1; �a2; �a3; �a4 = coefficients of characteristic polynomial
b1; b2; c1 = elements of Routh table
�D, D = diagonalized real constant damping matrix
~D, D̂ = real constant symmetric damping matrix
d = diagonal elements of matrix D
�d = diagonal elements of matrix �D
~G, Ĝ, �G, G = real skew symmetric constant gyroscopic

matrix
g = nonzero element of matrix G
�g = nonzero element of matrix �G
h, �h = expressions in Routh condition
~K, K̂, �K = real symmetric constant potential matrix
�K1, K = positive definite constant real matrix
k, s = elements of matrix K1
�k1; �k2; �k3 = elements of matrix �K1
~M = positive definite constant real mass matrix
p�λ� = characteristic polynomial
q = column vector
t = time, scaled time
u = slope of ray starting from the origin
x, y = column vectors
α = diagonal elements of matrix D
�α = diagonal elements of matrix �D

α0 =
����������������������
g2 − k − 1

p
Δ = Trace�D�
δ; �δ = arbitrary real nonzero number
γ, γ̂ = parameter describing slope of ray starting from

the origin
λ = variable in characteristic polynomial
τ = scaled time
ζ = γ − 1

I. Introduction

T HE genesis of the question raised in the title of this paper goes
back to the published work of Thompson and Tait in 1867,

whose results were proved byChetaev in the 1950s. The effort, which
was begun by Tait in 1861 and which culminated in themathematical
proof provided byChetaev, spans about 100 years. The accepted view
that has been passed down to the scientific community regarding the
question is that even the minutest linear dissipative damping when
introduced in an unstable potential system that is gyroscopically
stabilized makes the damped system unstable. This is the celebrated
Kelvin–Tait–Chetaev (KTC) result, which is perhaps one of the best-
known paradigms in linear stability theory, and one of its cornerstones.
Though somewhat nonintuitive, it is of great practical importance in
science and engineering because it correctly predicts the behavior of
gyroscopically stabilized systems in which the damping matrix is
positive definite [1–3].
The literature dealing with linear potential systems with indefinite

damping forces in the presence of gyroscopic forces is scant. Merkin
[4] considers an example in which a mono-rail car is stabilized by
using gyroscopic forces. Explaining that the Kelvin–Tait–Chetaev
(KTC) result would cause such a gyroscopically stabilized rail car
to become unstable in its motion when subjected to dissipative
damping, he uses indefinite damping. He shows that, by increasing
the gyroscopic stabilization force, stability could be possible if
certain conditions are satisfied. References [5,6], which deal with
indefinite damping, look at various linear systems from the viewpoint
of PT-symmetry breaking. Reference [5] includes a section on the
influence of small damping and nonconservative positional forces
on the stability of gyroscopic systems. Reference [6] includes a
discussion on the stability of a system in which the damping matrix
and the nonconservative force matrix in a linear system are
interrelated. Reference [7] shows that gyroscopically stabilized
systems can be destabilized by the addition of both positive definite
and indefinite damping matrices. Some recent results on the stability
of nonconservative systems are given in Ref. [8]. References [9,10]
deal with positive semidefinite damping matrices.
This paper aims at the development of an understanding of the

dynamical behavior of gyroscopically stabilized potential systems
when the damping matrix is indefinite. Potential (conservative)
systems are considered and assumed to be unstable. Furthermore,
they are assumed to be suitably stabilized by using gyroscopic forces.
The central result of the paper is that, by using appropriate damp-
ing forces that lead to indefinite damping matrices, damped
gyroscopically stabilized systems could be stabilized, and explicit
zones of exponential stability determined. To conceptually prove this
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general result, which is in contradistinction to the KTC paradigm,

two-degree-of-freedom systems are considered. An important

consequence is the establishment of the paradigm that an

exponentially stable control methodology can be found for

stabilizing such gyroscopically stabilized dynamical systems.
Though this paper deals with linear systems, the results obtained

herein are also useful and important for understanding the stability of

nonlinear systems. This is because the behavior of many nonlinear

systems close to their hyperbolic equilibriumpoints can be linearized,

and according to the Hartman-Grobman theorem [11] their behavior

is topologically equivalent to that of the linearized system.
Consider the unstable potential system described by the equation

~M �q� ~Kq � 0; ~K ≠ 0 (1)

where q is a 2n-vector (2n by 1 column vector), ~M is a constant real

positive definite 2n-by-2n matrix, and ~K is a real constant nonzero

symmetric matrix. The dots indicate differentiation with respect to

time t. Assume that this system is stabilized by the addition of a

suitable gyroscopic force represented by the 2n-by-2n real constant

skew symmetric matrix ~G so that the system

~M �q� ~G _q� ~Kq � 0 (2)

is stable (see Appendix). As we shall see later, not all unstable

potential systems described by Eq. (1) can be so stabilized. The

addition of linear damping to this gyroscopically stabilized system

yields the system described by

~M �q�� ~D� ~G� _q� ~Kq � 0 (3)

where ~D is a real constant symmetric matrix.
Using the transformation q�t� � ~M−1∕2y�t� and premultiplying

Eq. (2) by ~M−1∕2 this equation can be restated as

�y� Ĝ _y�K̂y � 0 (4)

where the 2n-by-2n skew-symmetric matrix Ĝ � ~M−1∕2 ~G ~M−1∕2,

and the symmetric matrix K̂ � ~M−1∕2 ~K ~M−1∕2. As before, the

undamped gyroscopic system described by Eq. (4) is stable. By

adding a linear damping force to the system, which is described in

Eq. (4), we obtain the equation ofmotion of a damped gyroscopically

stabilized system as

�y� �D̂� Ĝ� _y� K̂y � 0 (5)

where D̂ is a 2n-by-2n symmetric matrix. In most dynamical systems

the addition of a positive definite damping matrix D̂ increases the

system’s stability, since damping extracts energy from it.However, this

somewhat intuitive line of thinking is false for the gyroscopically

stabilized system (4), and the slightest addition of damping to the

system D̂ � ~M−1∕2 ~D ~M−1∕2, when the matrix D̂ is positive definite,

causes it to become unstable. This result is the celebrated and long-

established Kelvin–Tait–Chataev (KTC) result mentioned earlier

[1–3].
Since thematrix D̂ is real and symmetric, it can be diagonalized by

a real orthogonal matrix T, and by using a further transformation,

y�t� � Tx�t�, Eq. (5) can be written as

�x� � �D� �G�x� �Kx � 0 (6)

in which the 2n-by-2n matrix �G � TTĜT is skew-symmetric,

the matrix �K � TTK̂T is symmetric, and the matrix �D �
diag� �d1; �d2; : : : ; �d2n� is a diagonal matrix.
The gyroscopically stabilized (unstable) potential system

described by the following equation:

�x� �Gx� �Kx � 0 (7)

[or equivalently, by Eq. (2)] will oftentimes be referred to as the
“undamped gyroscopically stabilized system,” for short.

II. Main Results

In the context of the notation established above, the main
contribution of this paper is the investigation of the following
question:
Given the matrix �K ( ~K) that describes an unstable potential system

and given thematrix �G ( ~G) that gyroscopically stabilizes this unstable
potential system as in Eq. (7) [respectively, Eq. (2)], do matrices �D
( ~D) exist such that the system described by Eq. (6) [respectively,
Eq. (3)] is stable? Asymptotically (exponentially) stable? If such
matrices �D ( ~D) do exist, how can they be explicitly found? Can the
region of stability in the “space” of such dampingmatrices be exactly
and analytically delineated?
The Kelvin–Tait–Chataev (KTC) paradigm assures us that this is

not possible when �D ( ~D) is positive definite. Indefinite damping
matrices are therefore considered in this paper, and it is shown that
such matrices do not necessarily destabilize an undamped
gyroscopically stabilized system. In fact, the appropriate addition
of such indefinite damping matrices can make such undamped
gyroscopically stabilized systems exponentially stable.
To prove the central idea behind the above assertion it is sufficient

to consider a two-degree-of-freedom system described by Eq. (6). It
is shown that such a gyroscopically stabilized unstable potential
system can always bemade exponentially stable through the addition
of appropriate linear damping characterized by an indefinite damping
matrix. Conceptually, this leads to the creation of a new control
methodology that simultaneously uses both negative and positive
velocity feedback. The cooperative interaction of these feedbacks is
shown to make the damped system exponentially stable.
A two-degree-of-freedom dynamical system described by Eq. (6)

with n � 1 can be written as

"
�x1

�x2

#
|{z}

�x

�
0
@"

�d 0

0 − �α

#
|{z}

�D

�
"

0 �g

− �g 0

#
|{z}

�G

1
A"

_x1

_x2

#
|{z}

_x

−

"
�k1 �k3

�k3 �k2

#
|{z}

�K1

"
x1

x2

#
|{z}

x

� 0; �α; �d > 0 (8)

in which the various parameters contained in the matrices �D; �G, and
�K � − �K1 are shown. The matrix �D is indefinite, since we assume
that �α, �d > 0.
The undamped ( �d, �α � 0) gyroscopically stabilized system

described by Eq. (8) is assumed to be (marginally) stable. In the
Appendix it is shown that one of the requirements for an unstable
two-degree-of-freedom potential system to be gyroscopically
stabilized is that the matrix �K1 must be positive definite. Hence,
�k1, �k2 > 0.
Since �k2 > 0, a “scaled” time τ �

�����
�k2

p
t (instead of t) can be used

in Eq. (8). Dividing the resulting equation by �k2, Eq. (8) simplifies to

"
�x1

�x2

#
|{z}

�x

�
0
@"

d 0

0 −α

#
|{z}

D

�
"

0 g

−g 0

#
|{z}

G

1
A"

_x1

_x2

#
|{z}

_x

−

"
k s

s 1

#
|{z}

K1

"
x1

x2

#
|{z}

x

� 0; α; d; k > 0 (9)

where
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d�
�d�����
�k2

p ; α� �α�����
�k2

p ; g� �g�����
�k2

p ; k�
�k1
�k2
; and s�

�k3
�k2

(10)

and the scaled matrices D, G, and K1 are

D � �D∕
�����
�k2

q
; G � �G∕

�����
�k2

q
; and K1 � �K1∕ �k2 (11)

Equations (8) and (9) are alternative representations of the same

damped gyroscopically stabilized dynamical system. Inwhat follows

these two equivalent representations will be used alternatively. For

convenience, we will continue to use dots over the x’s to denote

differentiation in Eq. (9), though now they denote derivatives taken

with respect to the scaled time, τ, and not t.We shall refer to thematrix
�K � − �K1 (K � −K1) as the potential matrix, thematrix �G (G) as the

gyroscopic matrix, and the matrix �D (D) as the damping matrix, in

Eq. (8) [Eq. (9)].
The Appendix shows that for the undamped �d � α � 0�

(unstable) potential system shown in Eq. (9) to be gyroscopically

stabilized we require that

�i� K1 > 0; and

�ii� g2 > 1� k� 2

�����������������
�k − s2�

q
� :1� k� 2

����������������
Det�K�

p
� δ2;

∀ δ ≠ 0 (12)

The first condition places a restriction on the nature of unstable

potential systems that can be gyroscopically stabilized, that is, a

restriction on the matrix K; the second condition provides the

permissible values of g required to achieve gyroscopic stabilization,

that is, a restriction on the matrix G.
The aim is to find damping matrices D that can be added to the

undamped gyroscopically stabilized system so that the damped

system is asymptotically (exponentially) stable. More specifically,

the following question is addressed: when the undamped potential

system �x − K1x � 0 with K1 > 0 [see Eq. (9)] is gyroscopically

stabilized by using a particular value of g that satisfies Eq. (12), can

parameters d; α > 0 be found such that the damped system described

by Eq. (9) is made exponentially stable, without altering that

particular value of g? That is, can a given gyroscopically stabilized

system, always be made exponentially stable by the introduction of a

suitable indefinite damping matrix?

Remark 1: The diagonal damping matrix �D in Eq. (8) has the

element �d, which can be thought of as being physically generated

through (i) provision of dissipative damping to the first degree of

freedom, x1, or, from a controls viewpoint, (ii) negative velocity

feedback control provided to the first degree of freedom, x1. The
element − �α in �D, can be thought of as being physically generated

through the provision of positive velocity feedback control provided

to the second degree of freedom, x2. A similar interpretation can be

given to the elements d and −α of the matrix D in Eq. (9). Later, we

will consider how to choosewhich one of the two degrees of freedom

receives dissipative damping (or negative velocity feedback) and

which one receives positive velocity feedback. □

The characteristic polynomial, p�λ�, of the system described in

Eq. (9) is given by

p�λ� � λ4 � �d − α�|{z}
a1

λ3 � �g2 − k − 1 − αd�|{z}
a2

λ2

� �αk − d�|{z}
a3

λ� �k − s2�|{z}
a4

(13)

and its coefficients are denoted by

a1 � d − α; a2 � g2 − k − 1 − αd;

a3 � αk − d; and a4 � k − s2 � Det�K1�
(14)

Observe that the signs ofg and s in Eq. (9) are immaterial, since the

characteristic polynomial contains their squares. In particular,

the polynomial is therefore insensitive to the sign of the element g
in the gyroscopic matrix G.
For stability, all the coefficients in Eq. (13)must be positive, so that

we must have

a1 � Trace�D� � d − α > 0 → d > α > 0;

a2 � g2 − k − 1 − αd > 0 → d <
g2 − k − 1

α
;

a3 � αk − d > 0 → d < αk; and

a4 � Det�K� � Det�K1� > 0

(15)

Remark 2: The condition Trace�D� > 0 has a physical meaning

when the system described by Eq. (9) is viewed as a first

order dynamical system. Equation (9) can be written in first-order

form as

_z ≔
d

dt

2
6664
x1
x2
_x1
_x2

3
7775 �

2
4 0 I2
K1 −�D�G�

3
5

|{z}
A

2
6664
x1
x2
_x1
_x2

3
7775 ≔ Az (16)

The condition that Trace�D� � d − α ≔ Δ > 0 can now be seen

as the condition∇:�Az� � −Trace�D� < 0. Consider any volume V
in our four-dimensional phase space described by the coordinates

z � �x1; x2; _x1; _x2�T . Its rate of change with respect to time τ equals
the integral of∇:�Az� taken over the volume V. Hence, the condition
Trace�D� > 0 simply says that, in order for the system to be stable, a

necessary condition is that the phase-volume V ∼ e−Δτ. All phase
volumes therefore must exponentially shrink. If Δ � 0, phase

volumes are conserved. Lastly, if Δ < 0, the system is unstable, as

also seen from the first relation in Eq. (15). □

The Routh table [12] for this system whose characteristic

polynomial, p�λ�, given in Eq. (13) can be written down as follows:���� 1 a2 a4
a1 a3 0

b1 b2 0

c1 0

b2

The necessary and sufficient condition for asymptotic stability

of the system is that all the elements in the first column be positive,

and also all the coefficients in the characteristic polynomial. For

linear systems [see Eq. (3)], “asymptotic” stability is the same as

“exponential” stability. The latter term gives a better quantitative feel

for the behavior of the system and will more often be used in

the paper.
Looking down the first column of the Routh table, when d > α the

element a1 is positive, as is also required by the first relation in

Eq. (15) (also see Remark 2). For b1 to be positive, we require that

�g2 − k − 1 − αd� − a3
�d − α� > 0 (17)

For c1 to be positive, we require that
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h ≔ ��g2 − k − 1 − αd��d − α� − a3�a3 − �d − α�2Det�K� > 0

(18)

which implies that

�g2 − k − 1 − αd� > a3
�d − α� �

�d − α�Det�K�
a3

(19)

where a3 is given in Eq. (14). Clearly, if the inequality in Eq. (18) is
satisfied when Det�K� > 0 [see the last relation in Eq. (15)] and

when a3 > 0 [see the third relation in Eq. (15)], then the one in

Eq. (17) is also satisfied. Similarly, when the inequality in Eq. (18) is

satisfied, g2 − k − 1 > 0. Lastly, b2 � a4 � Det�K�.
We then have the following result.

Result 1:The systemdescribed byEq. (9) is exponentially stable if

and only if

�1� d > α > 0 (20)

�2� d < αk (21)

�3� αd < g2 − k − 1 (22)

�4� h ≔ ��g2 − k − 1 − αd��d − α� − �αk − d���αk − d�
− �d − α�2Det�K� > 0; and �23� (23)

�5� k − s2 � Det�K� > 0 (24)

The dependence on the gyroscopic damping, which is

characterized by the parameter g, always appears in the conditions

above in the form g2; hence stability is insensitive, as observed

before, to the sign of parameter g that is contained in the matrix G
in Eq. (9).
Alternatively, the conditions that guarantee exponential stability

are:

�i� the coefficients given in Eq. �14� are each positive; i.e.;

ai > 0; i � 1; : : : ; 4; and (25)

�ii� h > 0 (26)

where h is given in Eq. (23).
For a given undamped gyroscopically stabilized system, described

by known values of the parameters k, s, and g in Eq. (9), h is a

function of α and d, and in what follows we shall denote h�α; d�
simply by h. □

Corollary 1: In a similar manner to the conditions given in

Eqs. (25) and (26), the system described by Eq. (8) is exponentially

stable if and only if
(i) each of the coefficients �a1; �a2; �a3; �a4 of its characteristic

polynomial

p�λ� �λ4 � � �d − �α�|{z}
�a1

λ3 � � �g2 − �k1 − �k2 − �α �d�|{z}
�a2

λ2

� � �α �k1 − �d �k2�|{z}
�a3

λ� Det� �K1�|{z}
�a4

(27)

shown in Eq. (27) are positive, where Det� �K1� � �k1 �k2 − �k3, and

�ii� �h ≔ �� �g2 − �k1 − �k2 − �α �d�� �d − �α� − �a3� �a3 − � �d − �α�2Det� �K1�
> 0 (28)

Proof: The proof follows along the same lines as Result 1. When
�d � d; �α � α; �g � g; �k1 � k, �k2 � 1, and �k3 � s, then Eqs. (8) and
(9) becomes identical and Eqs. (27) and (28) reduce to those in
Eqs. (13) and (23), respectively. Notice that the characteristic
polynomial is again insensitive to the sign of �g, since it appear as �g2

in it.
The if-and-only-if conditions for exponential stability of the

damped gyroscopically stabilized system described by Eq. (8) are,
correspondingly,

�i� the coefficients shown in Eq. �27� are positive; i.e.; �ai > 0;

i � 1; : : : ; 4; and (29)

�ii� �h > 0 (30)

For a given undamped gyroscopically stabilized system, described
by knownvalues of the parameters �ki; i � 1; : : : 3, and �g in Eq. (8), �h
in Eq. (28) is a function of �α and �d, and in what follows we shall often
denote �h� �α; �d� simply by �h. □

Remark 3: We consider first the special case when k � 1. The
relations in Eqs. (20) and (21) cannot now be simultaneously
satisfied, and hence asymptotic stability is not possible. Moreover, if
d ≠ α then one of the two coefficients a1 or a3 of the characteristic
polynomial (13) is negative, and hence the system described by
Eq. (9) is unstable. □

Result 2:When k � 1, the system described by Eq. (9) cannot be
made exponentially stable by any choice of parameters α; d > 0.
Also, when k � 1, and d ≠ α the system is unstable. The case d � α
will be taken up later. □

Remark 4: Since K1 is positive definite, k > 0. Assume now that
0 < k < 1. Again, when d ≠ α, at least one of the two coefficients a1
or a3 of the characteristic polynomial (13) is negative, and hence the
system is unstable. The case d � α will be taken up later. □

From the last two remarks we have the following result.

Result 3: The system described by Eq. (9) is not exponentially
stablewhen 0 < k ≤ 1 and α; d > 0. Alternatively stated, the damped
system described by Eq. (8) cannot be made exponentially stable if
0 < k � � �k1∕ �k2� ≤ 1, for any choice of the parameters �α; �d > 0.
We shall later come back to the case when 0 < k < 1 (see
Result 5). □

Presently, having ruled out the possibility of exponentially
stabilizing the gyro-stabilized system (9) when 0 < k ≤ 1 through
the use of a linear indefinite damping matrix D with α; d > 0,
we now show that when k > 1, the undamped gyroscopically
stabilized system described by Eq. (9) can always be made
exponentially stable by a suitable choice of parameters d; α > 0. In
fact wewill show that when k > 1, there always exists a region in the
�α; d� plane forwhich the conditions given in Result 1 are satisfied by
system (9).
The conditions for exponential stability for system (9) that are

provided in Result 1 can be better understood from their geometrical
description. Consider the first quadrant (α; d > 0) of the �α; d� plane as
shown in Fig. 1a. Condition (20) requires thatd > α > 0, and therefore
d must be chosen to lie above the (green) line a1 � 0 or d � α.
Condition (21) requires that d < αk.When k > 1, the (red) line a3 � 0
or d � αk lies above the previous (green) line and so dmust be chosen
to lie below this (red) line.Condition (22) requires thatd be chosen to lie
below the hyperbola a2 � 0 or αd � g2 − k − 1 that is shown by the
blue line. Hence, to achieve exponential stability, our choice of d and α
is restricted to the sort of triangular sectorAOB shown in Fig. 1a, which
is enclosed between the two straight lines a1 � 0 and a3 � 0, and the
hyperbola a2 � 0. The condition that a4 > 0 or Det�K1� > 0 is
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always satisfied since the unstable potential system is stabilizable [see

Eq. (12)]. Thus the conditions for exponential stability would all be

satisfied if we show that there exists a region inside the sectorAOB that

satisfies Eq. (23), namely, h > 0.
Figure 1a shows that as k is reduced from some value greater than

unity, the slope of the lined � αk reduces, and the region in the sector
AOB between the two straight lines d � α and d � αk reduces.

These two lines appear to work like the blades of a scissor, and

eventually, when k � 1 (or �k1 � �k2), the entire sector AOB gets

completely scissored away, and the system is no longer exponentially

stable. This then is the geometric insight behind Result 2. As we will

see below (see Result 7), in order for the damped system to be stable

when k � 1 (or �k1 � �k2),wewould need to haveTrace�D� � 0, and
then too, only marginal stability can be achieved.

The intersection point, B, of the (green) line d � α and the (blue)

curve αd � g2 − k − 1 in the �α; d� plane has coordinates �α0;α0�
where α0 ≔

����������������������
g2 − k − 1

p
, as shown in Fig. 1a; similarly, the

intersection point, A, of the (red) line d � αk and the (blue) curve

αd � g2 − k − 1 has coordinates �α0∕
���
k

p
; α0

���
k

p �.
Remark 5: For Eq. (8), the corresponding sector AOB in the � �α; �d�

plane is the sector bounded by the straight lines �a1 � 0 and �a3 � 0,
and by the hyperbola �a2 � 0 [Eq. (27)]. As before, the condition
�a4 > 0 is always satisfied since the unstable potential system is

gyroscopically stabilizable (see the Appendix). Thus exponential

stability is guaranteed if one can find a region inside this sector where
�h > 0 [Eq. (30)]. □

Before proving the central result, it may be useful to provide the

context in which the result may be viewed. Assume that we are given

a two-degree-of-freedom unstable potential system �x − K1x � 0;
that is, the parameters k and s [see Eq. (9)] that describe this unstable
potential system are known. This potential system is assumed to be

gyroscopically stabilized. In order that this be possible, the

conditions in Eq. (12) must be satisfied. Thus k and s must have

values such that K1 > 0, and the specific value of g chosen to

stabilize the potential system must satisfy the second condition in

Eq. (12) for some nonzero δ.What wewant to inquire is this:Without

changing the specific value of g that has been used to stabilize the

unstable potential system, can parameters d; α > 0 be so chosen in

Eq. (9)—and hence the damping matrix D specified—so that the

damped gyroscopically stabilized system is made exponentially

stable?

Result 4: The undamped gyroscopically stabilized system

described by Eq. (9) can always be made exponentially stable by a

suitable choice of the parameters α; d > 0 when k > 1.
Alternatively stated, consider the introduction of an indefinite

damping matrix for an undamped gyroscopically stabilized system

(7). The damped system described by

"
�x1

�x2

#
|{z}

�x

�
0
@"

�d 0

0 − �α

#
|{z}

�D

�
"

0 �g

− �g 0

#
|{z}

�G

1
A"

_x1

_x2

#
|{z}

_x

−

"
�k1 �k3

�k3 �k2

#
|{z}

�K1

"
x1

x2

#
|{z}

x

� 0; �k1 > �k2 (31)

can then always be made exponentially stable by a suitable choice of

the parameters �α; �d > 0.
Proof: The equation describing the system is Eq. (9) with k > 1.

Geometrically, it must be shown that there exist points in the sector

AOB in Fig. 1a for which Eqs. (20–23) are always satisfied.
From the definition of the function h given in relation (23), it is

evident that the function h < 0 along the boundaries of the sector

AOB, that is, along the lines d � α, d � αk, k > 1, and along the

hyperbola αd � g2 − k − 1. Also, condition (24) is always satisfied
since we are considering a gyroscopically stabilized unstable

potential system, and therefore K1 > 0.
Consider the line

d ≔ u�γ�α � �1� �k − 1�∕γ�α; γ > 1 (32)

in the �α; d� plane (see Fig. 1a). It may be better to visualize this line

as a ray that goes through the originOwith slope u�γ�, which is yet to
be determined.
When γ � 1 and u � k, then Eq. (32) gives d � kα, which is the

line OA in Fig. 1a; when γ → ∞ and u � 1, Eq. (32) gives d � α,
which is the lineOB. Different values of γ yield different rays going
through the origin with different slopes, and for the rays through the

originO to lie in between the two straight linesOA andOB, we must

have γ > 1.
Consider a representative pointPwith coordinates �α; uα� on a ray

with a certain value of γ > 1. Since the undamped potential system is

gyro-stabilized, g2 must have a value that is given by Eq. (12) for

some fixed value of δ ≠ 0. Substituting for g2 from Eq. (12) in the

expression for the function h given in Eq. (23) evaluated at our

representative point P that lies on the line (32) we obtain

h � α2�k − 1�2
γ3

�−α2�γ − 1��γ � k − 1� � γf−�γ − 1�2

� �δ2 � 2
������������������
Det�K1�

p
��γ − 1� −Det�K1�g� (33)

This shows that when α � 0, then h � 0. Our aim is to choose

appropriate value(s) of γ > 1 (or slope u) when α > 0, so that h > 0.
Since α > 0 and k; γ > 1, we see from Eq. (33) that, for h > 0, we

require the quantity in the square bracket in Eq. (33) to be positive;

that is,

0 < α2 < γ ⋅
f−�γ − 1�2 � �δ2 � 2

������������������
Det�K1�

p ��γ − 1�
z}|{ζ

−Det�K1�g
�γ − 1��k� γ − 1�

≔ γ ⋅
n�γ�

�γ − 1��k� γ − 1� (34)

The denominator on the right-hand side of the inequality in relation

(34) is always positive. We therefore need to ensure that the

numerator is positive so that α is real and positive. Thinking of the

quadratic n�γ� [shown in curly brackets in the numerator in Eq. (34)]

as a function of γ, values of γ for which this function is guaranteed to
be positive are therefore required. For such values of γ, h > 0 when
the inequality in Eq. (34) is satisfied.
Setting ζ ≔ γ − 1 > 0 in n�γ�, we then find that for h to be positive

in the sector AOB we require ζ to be such that

Fig. 1 a) Geometric interpretation of the Routh conditions,

α0 �
����������������������
g2 − k − 1

p
.
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r�ζ� ≔ −ζ2 � �δ2 � 2
������������������
Det�K1�

p
�ζ −Det�K1� > 0 (35)

Thequadratic r�ζ� is negativewhen ζ � 0 andwhen ζ → �∞, and

the slope of r�ζ� is zero when ζ ≔ ζ� � �δ2 � 2
������������������
Det�K1�

p �∕2 > 0.

In fact, r�ζ�� � δ2
������������������
Det�K1�

p � �δ4∕4� > 0. Being negative when

ζ � 0 and ζ � ∞, and positive at ζ � ζ� > 0, the quadratic must

thenhave twopositive roots, betweenwhich itmust be positive. These

roots of the quadratic r�ζ� are

ζ1;2 �
1

2
δ2 �

������������������
Det�K1�

p
	 1

2

�����������������������������������������
δ4 � 4δ2

������������������
Det�K1�

pq
(36)

Since γ � 1� ζ, for all values of γ1 < γ < γ2, where

γ1;2 � 1� 1

2
δ2 �

������������������
Det�K1�

p
∓
1

2

�����������������������������������������
δ4 � 4δ2

������������������
Det�K1�

pq
(37)

we therefore haveh > 0. Thus forh > 0, the slopeu of line (32)must

lie in the open interval �u�γ1�; u�γ2��.
For any given value γ̂ in the (open) interval (γ1, γ2), the

corresponding value of the right-hand side of relation (34) gives the

interval

0 < α <

��������������������������������������
γ̂n�γ̂�

�γ̂ − 1��k� γ̂ − 1�

s
≔ αmax�γ̂� (38)

over which the function h > 0. For any value of γ̂ so chosen, there is
therefore a continuum of points along the line

d � �1� �k − 1�∕γ̂�α ≔ u�γ̂�α; 0 < α < αmax�γ̂� (39)

for which h > 0. But h in Eq. (23) is a polynomial in α and d, and its
graph is continuous. This polynomial is negative along the

boundaries of the sector AOB. Along a line d � u�γ̂�α that lies

between the linesOA andOB in Fig. 1a,h > 0whenα lies in the open
interval �0; αmax�γ̂��. At the two ends of this interval, h � 0. Because
the polynomial is continuous, theremust then be a region in the sector

AOB around this line inwhich the functionh continues to be positive.
Moreover, there is a continuum of such lines each described by

Eq. (32) in the �α; d� plane with slopes u�γ� for each value of γ in the
(open) interval (γ1, γ2). We are therefore assured that a continuous

region exists in the sector AOB in which h > 0 and all the

requirements inResult 1 are satisfied.And the existence of this region

assures exponential stability of the damped gyroscopically stabilized

system. □

Remark 6: Since a considerable amount of algebra is involved in

the proof, it may be useful to expose the central idea behind it.

Straight lines (rays) in the �α; d� plane emanating from the origin O
(see Fig. 1a) are considered. Each such ray is described by Eq. (32); it

lies in the sector AOB, in between the two lines d � α and d � kα,
with its slope, u, controlled by the parameter γ > 1. As seen from

Eq. (33), h � 0 when α � 0 (i.e., at O).

For the system described by Eq. (9) to be stable it is shown that the
values of γ must lie in the open interval �γ1; γ2�, where γ1 and γ2 are
explicitly given in Eq. (37). For each such value of γ, say γ̂, that lies in
this interval, we have a line emanating from O with slope u�γ̂� �
�1� �k − 1�∕γ̂� in the �α; d� plane. Starting infinitesimally close to
(but excluding)O, a representative point P that lies on this line (with
slope u�γ̂�) is allowed to travel (rightward) along it till its abscissa, α,
equals αmax�γ̂�, where αmax�γ̂� is given in Eq. (38). It is shown that
h > 0 at every location of the point P along this line whose abscissa,
α, lies in the open interval �0; αmax�γ̂��. When α � αmax�γ̂� by
Eq. (33), h � 0. The entire zone of stability is then determined by
considering all such lines that emanate from O with their slopes u
determined by values of γ̂ that lie in the open interval �γ1; γ2�, and
finding for each of them the corresponding value of αmax�γ̂�.
The proof therefore gives a constructive way of obtaining the zone

of stability within the sectorAOB in the �α; d� plane. (i) Use Eq. (37),
to obtain the open interval �γ1; γ2�. For every γ in this open interval
�γ1; γ2� draw a ray starting from O with slope u � �1� �k − 1�∕γ�
that ends in the coordinate �αmax; dmax� where

αmax �
��������������������������������������

γn�γ�
�γ − 1��k� γ − 1�

s
; with n�γ� � f−�γ − 1�2

� �δ2 � 2
������������������
Det�K1�

p
��γ − 1� −Det�K1�g (40)

and dmax � u�γ�αmax�γ�.
Then h > 0 at all points on every such (open) ray, excluding the

ray’s end points. The origin of the �α; d� plane and all such end points
�αmax; dmax� of each ray delineate the boundary of the region in the
sector AOB where h � 0. The region within this boundary gives the
zone of exponential stability for the system. This is how the zones of
exponential stability are obtained in the examples below. □

Remark 7: The damped gyroscopically stabilized system (9) has
the characteristic polynomial given in Eq. (13); it has been shown that
when k > 1, one can choose α; d > 0 so that all the roots of this
polynomial have negative real parts. Alternatively stated, the damped
gyroscopically stabilized system (8) has the characteristic polynomial
given in Eq. (27); it has been shown that when �k1 > �k2, one can
choose �α; �d > 0 so that all the roots of this polynomial have negative
real parts. This remark will be used later on. □

Remark 8:Once the zone of exponential stability is obtained in the
�α; d� plane for the system described by Eq. (9), the corresponding

zone of stability in the � �α; �d� plane for the systemdescribed byEq. (8)

is simple to obtain, since from Eq. (10) we know that �α � α
�����
�k2

p
and

�d � d
�����
�k2

p
. □

Hence given the undamped �d � α � 0� gyroscopically stabilized
system (9) with k > 1, it can always be made exponentially stable
through the use of an indefinite damping matrixD �d; α > 0�, which
can be provided by 1) negative velocity feedback, or dissipative
damping, to the degree of freedomwith coordinate x1, and 2) positive
velocity feedback to the degree of freedom with coordinate x2.

Fig. 2 a) The colored exponential stability zone. b) 3D plot of the surface h above the plane h � 0.
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Numerical Example 1: Consider the undamped, unstable potential
system described by the relation �x − K1x � 0 with the matrix K1

given in Eq. (9), where k � 5.5 and s � 2, so that Det�K1� � 1.5.
The system is gyroscopically stabilized by the matrixG using δ � 1,
which gives g2 � 9.9495 so that Eq. (12) is satisfied. The region in
the �α; d� plane inwhichh > 0 shown colored in Fig. 2a is the zone of
exponential stability. The damped gyroscopically stabilized system is
therefore exponentially stable for all points �α; d� that lie inside this
zone.A 3Dplot of the surfaceh�α; d� > 0 is shown in Fig. 2b; Fig. 2a
is a projection of this surface on the �α; d� plane. The hyperbola
αd � g2 − k − 1 is outside the range of the plot and is therefore
absent from it.
Responses of this damped gyroscopically stabilized systems

described by Eq. (9) are illustrated in Fig. 3 for three different points
�α; d� in the colored stability zone shown in Fig. 1a.
The initial conditions for the simulation (and those that follow in this

paper) are: x1�0� � 0.1, x2�0� � −0.1, _x1�0� � −0.1, _x2�0� � 0.2.

Corollary 2: For the system described in Eq. (8), one can follow
the same procedure as the proof in Result 4.

The sectorAOB (see Fig. 1a) in the � �α; �d� plane is now delineated by

the two straight lines �d � � �k1∕ �k2� �α ≔ k �α and �d � �α, and by the

hyperbola �d �α � �g2 − �k1 − �k2. Thecondition that the unstablepotential
system can be stabilized (see the Appendix) becomes (i) �K1 > 0, and

(ii) �g2 � �k1 � �k2 � 2
������������������
Det� �K1�

p
� �δ2; ∀�δ ≠ 0. The key stability

condition now becomes �h > 0, where �h is given in Eq. (28).
Since the algebra becomes cumbersome, only the equations that

correspond to Eqs. (32), (37), and (38), respectively, are stated below
(k � �k1∕ �k2):

�d ≔ u�γ� �α �
�
1� 1

γ
�k − 1�

�
�α; γ > 1 (41)

γ1;2 � 1� 1

�k2

�
1

2
�δ2 �

������������������
Det� �K1�

q
∓
1

2

�����������������������������������������
�δ4 � 4�δ2

������������������
Det� �K1�

qr �
(42)

and

0 < �α <

������������������������������������������
γ̂n�γ̂�

�k2�γ̂ − 1��k� γ̂ − 1�

s
≔ αmax�γ̂�; and dmax � uαmax

(43)

where

n�γ̂� � f− �k22�γ̂ − 1�2 � �k2�δ2 � 2
������������������
Det�K1�

p
��γ̂ − 1� −Det�K1�g

(44)

□

Result 4 (and Corollary 2) deals with the situation when k > 1 in
Eq. (9) [ �k1 > �k2 in Eq. (8)]. We have so far shown that under this
restriction the undamped gyroscopically stabilized system is
guaranteed to be exponentially stable using a set of appropriate
indefinite damping matrices whose parameters lie in the stability
zone, which is guaranteed to exist. Looking at the diagonal elements
of matrix K1� �K1�, we observe that exponential stability of the
damped gyroscopic system results when the dissipative damping

term is provided to (or “paired with”) that degree of freedom for

which the diagonal element of K1� �K1� is larger.
This, however, leaves open the question about what should be

done if in an undamped gyroscopically stabilized dynamical system we

do indeedhavek < 1 in thepotentialmatrixK1 inEq. (9) or, alternatively,

when �k1 < �k2 in �K1 in the undamped gyroscopically stabilized system

described by Eq. (8). The next result answers this question.

Result 5: When �k1 < �k2 the undamped gyroscopically stabilized

system shown in Eq. (8) with �α � �d � 0 can always be rendered

exponentially stable by interchanging the diagonal elements of the

matrix �D in Eq. (8). That is, the system described by

�
�x1

�x2

�
�

��− �α 0

0 �d

�
|{z}

�D

�
�

0 �g

− �g 0

�
|{z}

�G

��
_x1

_x2

�

−
� �k1 �k3

�k3 �k2

�
|{z}

�K1

�
x1

x2

�
� 0; �α; �d > 0; �k1 < �k2 (45)

can always be made exponentially stable by an appropriate choice of
�α; �d > 0. Note in Eq. (45) that the degree of freedom, x1, that has the
smaller value of the stiffness, �k1, along the diagonal of �K1, is provided

(paired) with positive velocity feedback; the degree of freedom, x2,
that has the larger value of the stiffness, �k2, along the diagonal of �K1 is

provided (paired) with dissipative damping (or negative velocity

feedback). This sort of pairing is similar to that observed in Eq. (31),

where we ensured exponential stability of the system when �k1 > �k2
as seen in Result 4.
Proof: Equation (45) can be rewritten as

�
�x2

�x1

�
�

�� �d 0

0 − �α

�
|{z}

�D

�
�
0 − �g

�g 0

�
|{z}

�G

��
_x2

_x1

�

−
� �k2 �k3

�k3 �k1

�
|{z}

�K1

�
x2

x1

�
� 0; �k2 > �k1 (46)

which has exactly the same structure (matrices) as Eq. (31), except

that the elements in the matrix �G now have their signs reversed. The

characteristic polynomial of this equation, which is insensitive to the

sign of g, is

λ4 � � �d − �α�λ3 � �g2 − �k1 − �k2 − �α �d�λ2
� � �α �k2 − �d �k1�λ� �k1 �k2 − �k23 (47)

Comparing Eqs. (27) and (47), we see that for the damped gyro-

stabilized system (46), when �k2 > �k1 we can choose �α; �d > 0 so that

Fig. 3 Exponentially stable response: a) α � 0.25, d � 0.75, b) α � 0.375, d � 1.25, c) α � 0.5, d � 1.5.

378 UDWADIA

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

SO
U

T
H

E
R

N
 C

A
L

IF
. o

n 
Ja

nu
ar

y 
23

, 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
84

18
 



all the roots of this polynomial have negative real parts (see

Remark 7). Note that all the coefficients of this polynomial (47) are

identical to that in Eq. (27), except for the coefficient, �a3, of the linear
term in λ. Hence, the result. □

Corollary 3: Result 5 is important from a practical standpoint

because it informs us about which one of the two degrees of freedom

of the undamped gyroscopically stabilized system described by

Eq. (7) should be provided with dissipative damping �d so that the

damped system is made exponentially stable. As seen from the

matrices �D in Eqs. (31) and (45), dissipative damping (or negative

velocity feedback control) should be provided to, or paired with, that

degree of freedom for which the diagonal element of the stiffness

matrix �K1 is larger; positive velocity feedback control must be

provided to, or paired with, that degree of freedom for which the

diagonal element of the stiffness matrix �K1 is smaller. □

Remark 9: Themeaning of Result 5 can now be further explicated.

Consider the damped gyroscopically stabilized system shown in

Eq. (8) in which the parameters �k1 � p, �k2 � q, �k3 � w, and �g are

given, with p > q. Result 4 and Corollary 2 say that such a system

can always be made exponentially stable when the dissipative

damping, �d, is paired with that degree of freedom for which the

diagonal entry, p, of �K1 is larger. Hence, the system

�
�x1

�x2

�
|{z}

�x

�
�� �d 0

0 − �α

�
|{z}

�D

�
�

0 �g

− �g 0

�
|{z}

�G

��
_x1

_x2

�
|{z}

_x

−
�
p w

w q

�
|{z}

�K1

�
x1

x2

�
|{z}

x

� 0; p > q (48)

can bemade exponentially stable and its zone of stability in the � �α; �d�
plane can be explicitly determined (using Remark 8 or Corollary 2).

Its characteristic polynomial is [see Eq. (27)]

p�λ� � λ4 � � �d − �α�λ3 � � �g2 − p − q − �α �d�λ2
� � �αp − �dq�λ� pq − w2 (49)

Say the stiffnesses of the diagonal elements, �k1 and �k2, of �K1 in this

system are interchanged while keeping all the other parameters

unchanged, so that now �k1 � q, �k2 � p, with, as before,p > q. Note
that the conditions that the system with this new unstable potential

matrix be gyroscopically stabilizable remain the same as before (see

Appendix). Result 5 says that exponential stability is again assured

when the dissipative damping, �d, is pairedwith the degree of freedom
for which the diagonal term, p, of the newmatrix �K1 is larger. Hence

the system

�
�x1

�x2

�
|{z}

�x

�
��− �α 0

0 �d

�
|{z}

�D

�
�

0 �g

− �g 0

�
|{z}

�G

��
_x1

_x2

�
|{z}

_x

−
�
q w

w p

�
|{z}

�K1

�
x1

x2

�
|{z}

x

� 0; p > q (50)

can bemade exponentially stable and its zone of stability in the � �α; �d�
plane can be determined as proved in Result 5. The characteristic

polynomial of this system, which is described by Eq. (50), is given in

Eq. (47) and now becomes

p�λ� � λ4 � � �d − �α�λ3 � � �g2 − p − q − �α �d�λ2 � ��αp − �dq�λ
� pq −w2 (51)

But equations (49) and (51) are identical!
Since the systems described by Eqs. (48) and (50) have the same

characteristic polynomial, all their stability properties, including their

zones of exponential stability, are identical. □

Numerical Example 2: A heavy particle rests at the origin O on a

smooth surface that revolves with constant angular velocity ω about

an upward vertical normal Oz, which passes through the particle.

Assume that the surface has a curvature that is synclastic upward and

that it is described by the equation z � �ax21 � bx22�∕2� cx1x2 in a
coordinate frame Ox1x2z with origin at O that rotates with the

surface. The equation of motion of the particle relative to the moving

surface for small oscillations about the origin (the equilibrium

position) can be written as,

�
�x1

�x2

�
� 2

�
0 ω

−ω 0

��
_x1

_x2

�

�
��−ω2 0

0 −ω2

�
� ge

�
a c

c b

���
x1

x2

�
� 0 (52)

since z is of the second order of small quantities. Acceleration due to

gravity is denoted by ge.
Using the parameter values a � 0.3; b � 0.2; c � 0.1;

ω � 2, ge � 10, in consistent units, we obtain the equation [see

Eq. (45)]

�
�x1
�x2

�
� 2

�
0 2

−2 0

�
|{z}

�G

�
_x1
_x2

�
−
�

1 −1
−1 2

�
|{z}

�K1

�
x1
x2

�
� 0 (53)

Since �K1 > 0 and �g2 � 16, we obtain δ2 � 11 ≠ 0 (see the

Appendix). Hence the conditions for gyroscopic stabilization are

satisfied, and the unstable potential system can be stabilized

when ω � 2.
Since �k1 < �k2 and �k1 � 1 , the addition of the (indefinite) damping

matrix �D to the gyroscopically stabilized system described by

Eq. (53) yields the damped system

�
�x1

�x2

�
�

�−α 0

0 d

�
|{z}

�D

�
_x1

_x2

�
� 2

�
0 2

−2 0

�
|{z}

�G

�
_x1

_x2

�

−
�

1 −1

−1 2

�
|{z}

�K1

�
x1

x2

�
� 0; α; d > 0 (54)

Equation (54) shows that, in accordancewith Corollary 3, negative

velocity feedback (or dissipative damping) is applied to the

coordinate x2, and is paired with the diagonal element of the matrix
�K1, which is larger, and whose numerical value is 2. For all values of

�α; d� that lie in the zone of stability, which has been shown to always
exist, this system is guaranteed to be exponentially stable. This zone

of exponential stability is shown in Fig. 4a. Figure 4b shows the

region inwhich the surfaceh�α; d� lies above the planeh � 0; Fig. 4a
is its projection on the �α; d� plane.
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The response of the system described by Eq. (54) for any �α; d�
pair that lies in the colored region guarantees exponential stability of
the damped gyroscopically stabilized system. Figures 5a and 5b show
the behavior of the system for the pairs (2.7, 3.5) and (2.8,3.5); the
first point lies in the zone of exponential stability, whereas the second
does not.

The rotating field of force described in this example is often met
with in astronomy also. If the components of a binary star describe
circles about their common center of mass, the force is always the
same at the same point of the rotating plane. After linearization, with
an appropriate change of the last matrix on the left-hand side of
Eq. (52), such an equation would apply to the motion of a satellite (or
planet) moving in that plane, provided that the motions of the
component stars are left very nearly undisturbed by its attraction.
Some general comments can now be drawn from the nature of the

zone of exponential stability illustrated in Fig. 4, some of which
appear nonintuitive.
(a) One would expect that the damped gyroscopically stabilized

system would become “more stable,” were we to increase the
negative velocity feedback (dissipative damping) in the system
(by increasing the value of d), relative to the positive velocity
feedback (α). And though we have admittedly provided this
dissipative damping only to the second degree of freedom in the
last example, themotion of the first degree of freedom is coupled
to that of the second via the equations ofmotion. Because of this
coupling, one might expect then that this increased stability
brought on by increasing the dissipative damping on the second
degree of freedom would permeate throughout the system, and
make it more stable, in a sense. But it doesn’t! We see from
Fig. 4a that for a given value of α for which one could have
stability (say, 1 < α < 2.5), increasing the value of d and
therefore the dissipative damping on the second degree of
freedomdoes not necessarily improve the stability of the system!
In fact, for values ofd larger than about 4.4, this system isalways
unstable for all values of α (see Fig. 4a).

(b) For any given value of α at which the system could be
exponentially stable there is, in general, a corresponding
interval of values of d for which the system is exponentially
stable (see Fig. 4a).

(c) While the presence of positive velocity feedback is
quintessential for achieving exponential stability in the

system, itsmagnitude cannot be too large, since fromFig. 4we
see that the system is unstable for all values of α in excess of
about 3.8, no matter what value of d is used.

(d) As shown inRemark 9, by usingEqs. (31) and (45)with proper
pairings of the elements of the damping matrix regarding the
dissipative and positive feedback terms in them, the zone of
exponential stability when �k1 < �k2 can be directly obtained
from that for �k1 > �k2. Therefore, it is sufficient to consider
only the situation when �k1 > �k2 (k > 1) to determine the zone
of exponential stability in the �α; d� plane.

We next consider some special, nongeneric situations. When the

coefficient a1 � 0 in the characteristic polynomial in Eq. (9),

(i) d � α, and (ii) volumes in phase space no longer shrink, but are

conserved (remain constant) as the system evolves in time (see

Remark 2). We shall assume that α; d > 0.

Remark 10: Consider the nongeneric system described by Eq. (9)

when a1 � 0 and a3 > 0.

We note that a3 � d�k − 1� > 0, when k > 1. The Routh table

needs to be modified, since the first element in the second row of the

table is 0. We then have [13]:

Modified second row � �original second row�
− �original second row shifted to the left by one column� (55)

Hence, we get the Routh table with the modified second row

to be ���� 1 a2 a4
−a3 a3 0

b1 b2 0

c1
b2

which shows that the system then is unstable. One needs only the

second row of the table to deduce this.

Fig. 5 a) Exponentially stable response for α � 2.7, d � 3.5. b) Unstable response for α � 2.8, d � 3.5.

Fig. 4 a) Exponential stability zone for system in Eq. (54). b) 3D plot of the surface h above the plane h � 0.
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When considering Eq. (8) the a 0
i s in this Routh table (and in the

tables that follow) are replaced by �a 0
i s [see Eqs. (15) and

(27)]. □

We have then the following result.

Result 6: The undamped gyroscopically stabilized two-degree-

of-freedom (nongeneric) system in Eq. (9) [Eq. (8)] is unstable when

Trace�D� � 0 �Trace� �D� � 0�, and k > 1 ( �k1 > �k2 > 0). □

Numerical Example 3: Figure 6 shows an example of the system in

which Trace� �D� � 0, and �k1 > �k2 > 0, with the parameters

�α� �d� 0.5; �k1 � 4; �k2 � 2; �k3 �−2; �g� 5 (56)

The response of the system is seen to be unstable.

Remark 11:When a1, a3 � 0, in the system described by Eq. (9)

then every element in the second row of the Routh table is zero, and

the second row needs to be modified [12]. As before, when a1 � 0,
then d � α, and Trace�D� � 0. When a3 � 0, then d�k − 1� � 0,

implying that k � 1 ( �k1 � �k2). Recall that (see Appendix) for the

unstable potential system to be gyroscopically stabilizable we now

require a4 > 0, and g2 > 2� 2
������������������
Det�K1�

p
. Writing the Routh table

shown below ���� 1 a2 a4
2 a2 0
a2
2

a4 0

a2 −
4a4
a2

a4

and looking down its first column we find that, if a2 > 0, and

a22 − 4a4 > 0, then there are no roots ofp�λ� in the right half complex

plane. But since p�λ� now is a polynomial that has only even powers

of λ, it has no roots in the left half plane either, and hence all four roots
ofp�λ�must lie on the imaginary axis. To ensure (marginal) stability,

the multiplicity of each root cannot exceed unity. Using the relations

in Eq. (15) for a2 and a4, we have the following stability

result. □

Result 7: The two-degree-of-freedom undamped gyroscopically
stabilized (nongeneric) system in Eq. (9) is marginally stable when
Trace�D� � 0, and k � 1 if

�i� g2 > 2� 2
������������������
Det�K1�

p
� d2 ≔ g20; and (57)

�ii� Themultiplicity of the imaginary roots of p�λ� is unity (58)

Note that g0 exceeds the minimum value of g required for
gyroscopic stabilization of the undamped system.
For the system in Eq. (8), the a 0

i s in the Routh table are replaced by
�a 0
i s [see Eqs. (15) and (27)] to get the corresponding conditions that

yield marginal stability when �k1 � �k2. The first condition above then
becomes

�g2 > 2 �k1 � 2

������������������
Det� �K1�

q
� �d2 ≔ �g20 (59)

□

Consider an unstable (nongeneric) potential system in which
�k1 � �k2 that is gyroscopically stabilized. The system is marginally
stable, and, say, the minimum gyroscopic force is used to stabilize it
(see Appendix). If we introduce an indefinite damping matrix �D into
the system, by Result 2 its Trace� �D� must be zero. But for the
damped system to be stable, a larger gyroscopic force than that
required to stabilize the undamped unstable potential system is
required, as seen from relation (59). From a practical standpoint, it
therefore may be unreasonable in this circumstance to add an
indefinite damping matrix to such a nongeneric undamped
gyroscopically stabilized system. This is because the larger
gyroscopic forces needed for stability in the presence of indefinite
damping still keep the system only marginal stable. The following
example illustrates this.

Numerical Example 4: As an example, we take the system
�α � �d � 0.8, �k1 � 2.5, �k2 � 2.5, �k3 � −2, �g � 5, in which
�k1 � �k2. With these parameters, we get for the condition in Eq. (59):

�g >

��������������������������������������������������
2

������������������
Det� �K1�

q
� 2 �k1 � �d2

r
� 2.94 ≔ �g0

Hence with �g � 5, stability is ensured if the roots of p�λ� have
multiplicity 1, so that no polynomial-type instability occurs. The
roots of the characteristic polynomial p�λ� are λ1;2 � 	0.342i, and
λ3;4 � 	4.387i, and since the multiplicity of each root is unity, the
system is marginally stable.
However, the undamped gyroscopically stabilized system requires

a gyroscopic matrix with �g >

���������������������������������������
2 �k1 � 2

������������������
Det� �K1�

pq
≔ �gu ≈ 2.83

(see the Appendix). Since �g0 > �gu, for �gu < �g < �g0 the damped
system is unstable while the undamped system is stable! Thus, on
reducing the value of �g (from 5) to 2.84 > �gu, and thereby using a
lower gyroscopic force, the unstable potential system is gyro-
stabilized without any damping; its eigenvalues are λ1;2 � 	1.103i,
and λ3;4 � 	1.36i, and the system is marginally stable (see Fig. 7a).

Consider now increasing �g to 2.92, which is less than �g0 yet greater

than �gu, with an indefinite damping matrix with �α � �d � 0.8.
Despite the addition of damping and the use of a greater gyroscopic

Fig. 7 �k1 � 2.5, �k2 � 2.5, �k3 � −2: a) �α � �d � 0, �g � 2.84. b) �α � �d � 0.8, �g � 2.92. c) �α � �d � 0.8, �g � 2.95.

Fig. 6 Unstable response of system for �α � �d � 0.5, �k1 � 4, �k2 � 2, and
�g � 5.
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force ( �g � 2.92), the damped system becomes unstable because
Eq. (59) is no longer satisfied (see Fig. 7b). From the Routh table
above, we expect to have two eigenvalues with positive real parts;
their computed values are λ1;2 � 0.169	 1.213i. The solid line

shows the response x1�t� and the dashed line x2�t�. Indeed, it takes an
even greater gyroscopic force with �g � 2.95 > �g0 > �gu to stabilize
the system in the presence of indefinite damping as seen in Fig. 7c,
while still leaving it only marginally stable with eigenvalues
λ1;2 � 	1.106i, and λ3;4 � 	1.356i.

We have now covered all three cases for the unstable potential
matrix �K1: (i) �k1 > �k2 (ii) �k1 < �k2, and (iii) �k1 � �k2. The last is a
nongeneric property in the set of potential matrices. The first two
cases lead to gyroscopically stabilized systems that can always be
made exponentially stable by using an indefinite damping matrix
whose trace is positive (Results 4 and 5, and Remark 9). The third
case requires that the indefinite damping matrix have trace zero, and
that the conditions in Eqs. (58) and (59) be satisfied; however, it
leaves the damped gyroscopically stabilized system only marginally
stability (Result 7).

Remark 12: We next consider the nongeneric case when a1 � 0
and −β ≔ a3 < 0 in Eq. (9). These conditions imply that 0 < k < 1.
With these conditions, the Roth table becomes:���� 1 a2 a4

β −β 0

a2 � 1 a4 0

−β − βa4
a2�1

a4

To ensure that the first column of the Routh table is positive, we
require that a2 � 1 > 0. But then in the fourth row there is a sign
change since a4 � Det�K� > 0, and so the system is unstable; at
least one root of the characteristic equation has a positive real part.We
could of course have directly concluded instability because the
coefficient a3 of the characteristic polynomial is negative; however,
the Routh table above gives more information regarding the
placement of the roots in the complex plane, namely, that two roots of
the characteristic polynomial have positive real parts. We then have
the following result. □

Result 8:The undamped gyroscopically stabilized two-degree-of-
freedom (nongeneric) system given in Eq. (9) [Eq. (8)] with
Trace�D� � 0 �Trace� �D� � 0�, and 0 < k < 1 (0 < �k1 < �k2) is
unstable. □

Recall from Result 2 that when k � 1, and Trace�D� > 0, the
nongeneric system is unstable. Furthermore, Results 6, 7, and 8 can
be summarized by saying that when Trace�D� � 0, the damped
gyro-stabilized system cannot be made stable unless k � 1
( �k1 � �k2). When k � 1, in order for the damped gyro-stabilized

system (9) to be stable, we must have Trace�D� � 0, that is, d � α.
The damped system can then be made marginally stable if the
conditions in Eqs. (58) and (59) are satisfied.

Numerical Example 5: We consider the system

�α � �d � 0.5; �k1 � 2; �k2 � 4; �k3 � −2; �g � 5 (60)

Since �a1 � 0 and 0 < �k1 < �k2, the coefficient �a3 of the
characteristic equation is negative, and therefore the system is
unstable. But more can be said by using the Routh table above.
Since �a2 � 1 � �g2 − �k1 − �k2 − �d2 � 1 � 19.75 > 0, and

�a4 � 4 > 0, the Routh table shows that we must have 2 roots of
the characteristic equation with positive real parts. The unstable
response of the system is shown in Fig. 8, and the two roots with
positive real parts are 0.0273	 0.464i, as expected.

Remark 13: Lastly, we consider the special, nongeneric case when
a1; a2; a4 > 0 and a3 � 0 in Eq. (9). The condition a3 � 0 implies
that d∕α � k; that is, the ratio of the magnitudes of the dissipative
damping and the positive velocity feedback equals the ratio of the
stiffnesses �k1 and �k2. The Routh table shows that there are two roots
of the characteristic equation with positive real parts, and the system
is unstable. □

Result 9: The undamped gyroscopically stabilized two-degree-
of-freedom (nongeneric) system given in Eq. (9) [Eq. (8)] with
Trace�D� > 0 �Trace� �D� > 0� and d∕α � �k1∕ �k2 � k ( �d∕ �α �
�k1∕ �k2), is unstable. □

Numerical Example 6: Consider the system

�α � 0.2; �d � 0.4; �k1 � 4; �k2 � 2; �k3 � −2; �g � 5

We note that the conditions given in Result 9 are satisfied.
Figure 9 shows the unstable response of the system. The two roots of
the characteristic equation with positive real parts are
0.0011	 0.462i.

Remark 14:The systems considered inResults 6–9 are nongeneric.
In Results 4 and 5, it is shown that for every two-degree-of-freedom
unstable potential matrix �K1, which can be gyro-stabilized through
the use of a gyroscopic matrix �G, there exist numerous indefinite
matrices �D that will render the system in Eq. (8) exponentially stable.
The only exception is the nongeneric case when �k1 � �k2 in matrix
�K1. And in that case Result 7 applies; only marginal stability can be
achieved, and that too after additional restrictions are placed on the
matrix �G. □

III. Conclusions

An unstable potential system that has been gyroscopically
stabilized becomes unstable in the presence of dissipative damping.

Fig. 8 Unstable response of system with �α � �d � 0.5, �k1 � 2, �k2 � 4,
�k3 � −2, and �g � 5.

Fig. 9 Unstable response of system with �α � 0.2, �d � 0.4, �k1 � 4,
�k2 � 2, �k3 � −2, �g � 5.
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This well-established result has been handed down to the scientific
and engineering communities since at least the last 100 years.
Though nonintuitive, it is of considerable practical value since it
correctly predicts the behavior of engineered systems as well those
arising in nature. Today it is referred to in stability theory as the
celebratedKelvin–Tait–Chetaev theorem. The central purpose of this
paper is to show that this long-standing paradigm—related to the
work initiated by Tait in 1861 and completed with Kelvin in 1867—
does not apply when the damping in a system is not purely
dissipative. In this sense, the paper represents a paradigm shift in the
theory of linear stability that says that gyro-stabilized unstable
potential systems can be stabilized by the addition of linear damping.
To substantiate this paradigm shift, two-degree-of-freedom

gyroscopically stabilized unstable potential systems are considered
in this paper. Not all unstable potential systems with an even number
of degrees of freedom can be gyroscopically stabilized. Restrictions
need to be placed on both the unstable potential system (i.e., on the
potential or stiffness matrix) and on the gyroscopic forces
(gyroscopic matrix) employed to achieve such stabilization.
Conditions are obtained under which a two-degree-of-freedom
systemwith an unstable potentialmatrix can be stabilized through the
use of gyroscopic forces. It is then shown that, excluding nongeneric
systems, such gyroscopically stabilized systems can always be made
exponentially stable through the addition of appropriate indefinite
damping matrices.
This result conceptually points to a new methodology to control

unstable potential systems that are gyroscopically stabilized. One
way of physically generating an indefinite dampingmatrix is through
the simultaneous provision of both positive and negative velocity
feedback to different degrees of freedom of the undamped
gyroscopically stabilized system. The cooperative interaction of
these feedbacks engenders a somewhat surprising and nonintuitive
type of control methodology that guarantees the capability ofmaking
the (generic) damped gyro-stabilized unstable potential system
exponentially stable.
For two-degree-of-freedom systems a simple way of ascertaining

which one of the two degrees of freedom receives negative velocity
feedback (or dissipative damping) and which one receives positive
velocity feedback is established. It is analytically and geometrically
shown that a connected region exists in the “space” of indefinite
damping matrices for which the damped gyroscopically stabilized
system is guaranteed to be exponentially stable. This region of
exponential stability is analytically delineated. The paper further
proves that every (generic) two-degree-of-freedom system that can
be gyroscopically stabilized can also be made exponentially stable
by the use of an uncountably infinite number of indefinite damping
matrices. Contrary to intuition, when the damping matrix is
indefinite, progressively increasing the dissipative damping (for a
given amount of positive velocity feedback), does not, in general,
necessarily increase the likelihood of making a damped
gyroscopically stabilized system stable, and can, in fact, make the
system unstable. Instead, it is shown that for each value of the
positive velocity feedback for which the damped system could be
made exponentially stable, stability is assured only over a range, or
interval, of values of the dissipative damping. Moreover, it is shown
that in certain regimes (ranges) of positive velocity feedback no
amount of dissipative damping can make the damped system
exponentially stable. Conversely, there are regimes (ranges) of
dissipative damping for which no amount of positive velocity
feedback can make the system exponentially stable. Nonetheless, it
is always possible to bestow exponential stability on the damped
gyro-stabilized system.
The use of indefinite damping matrices whose traces are positive,

and so imply that phase volumes exponentially shrink, appears to
provide a practical way to achieve exponentially stable behavior of a
damped gyro-stabilized (unstable) potential system. Special
nongeneric situations (e.g., when the trace of the indefinite damping
matrix is exactly zero) that lead only to marginal stability and even
instability are considered in some detail.
The focus of this paper is to develop new concepts and ideas that

have gone unaddressed thus far in the development of the theory of

linear stability—an area of significant interest to physicists,
engineers, and mathematicians, because of its wide-spread
practical utility. The central concept proposed herein is the
following: in contradistinction to the well-known Kelvin–Tait–
Chetaev paradigm, which says that instability is engendered
through the use of positive definite damping matrices, this paper
shows that gyro-stabilized unstable potential systems can be made
stable, even exponentially so, through the use of appropriate
indefinite damping matrices. To substantiate this new paradigm, a
detailed investigation of two-degree-of-freedom gyro-stabilized
systems is undertaken. Though two-degree-of-freedom systems
can and do arise in engineering applications and in nature (e.g.,
astrodynamics; see Numerical Example 2), they are not commonly
found in engineered systems, except when strong symmetries exist
or when some modeling simplifications are applicable.
From a conceptual standpoint, this paper 1) provides a framework

for making gyroscopically stabilized systems exponentially stable
through the use of linear damping, thereby calling for a modification
of the Kelvin–Tait–Chataev paradigm; 2) demonstrates a practical
control methodology to achieve this; and, most importantly, 3) points
to new directions and paradigms in our understanding of linear
stability of dynamical systems.

Appendix: Conditions for Gyroscopic Stabilization of
Unstable Potential Systems

Result: In the notation given in Eq. (8), a two-degree-of-freedom,
unstable potential system can be gyroscopically stabilized through
the use of the two by two matrix �G, if and only if

�i� �K1 > 0; with �k1; �k2 > 0; and (A1)

�ii� �g2 � �k1 � �k2 � 2
������������������
Det�K1�

p
� �δ2; for some �δ ≠ 0 (A2)

Proof: Using the notation shown in Eq. (8), consider the unstable
potential system

�
�x1
�x2

�
|{z}

�x

−
�
�k1 �k3
�k3 �k2

�
|{z}

�K1

�
x1
x2

�
|{z}
x

� 0; �K1 ≠ 0 (A3)

that is stabilized by the addition of a gyroscopic matrix �G to yield the
undamped gyroscopically stabilized system

�
�x1
�x2

�
|{z}

�x

�
�

0 �g
− �g 0

�
|{z}

�G

�
_x1
_x2

�
|{z}

_x

−
�
�k1 �k3
�k3 �k2

�
|{z}

�K1

�
x1
x2

�
|{z}

x

� 0 (A4)

The characteristic polynomial of the system described in Eq. (A4) is

z�λ� ≔ λ4 � � �g2 − �k1 − �k2�λ2 �Det� �K1� � 0 (A5)

where Det� �K1� � �k1 �k2 − �k23.
For stability of the system described in Eq. (A4), we must

then have Det� �K1� > 0 and � �g2 − �k1 − �k2� > 0. Furthermore,
considering the polynomial as a quadratic in μ ≔ λ2, its roots are
given by

2μ1.2 � −� �g2 − �k1 − �k2� 	
���������������������������������������������������������
� �g2 − �k1 − �k2�2 − 4Det� �K1�

q
(A6)

For the system described by Eq. (A4) to be stable, μ1;2 must be real
and negative. This makes the four roots of the biquadratic in λ purely
imaginary, and stability is assured when these roots are distinct.
Hence, we require

UDWADIA 383

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

SO
U

T
H

E
R

N
 C

A
L

IF
. o

n 
Ja

nu
ar

y 
23

, 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
84

18
 



� �g2 − �k1 − �k2�2 > 2Det� �K1� (A7)

or,

�g2 > �k1 � �k2 � 2

������������������
Det� �K1�

q

Thus, for the unstable two-degree-of-freedom potential system
described by Eq. (A3) to be gyroscopically stabilized it is required
that

�i� Det� �K1� > 0; and (A8)

�ii� �g2 � �k1 � �k2 � 2

������������������
Det� �K1�

q
� �δ2; for some �δ ≠ 0 (A9)

Furthermore, since the potential system described by Eq. (A3) is
unstable, the matrix �K1 must have at least one positive eigenvalue, or
one zero eigenvalue.
Consider first the case when �K1 has one positive eigenvalue. Then

from Eq. (A8), for the system described by Eq. (A4) to be stable we
require, Det� �K1� > 0. But since Det� �K1� is the product of the
eigenvalues of �K1, its other eigenvalue must also be positive, so that
�K1 > 0. This then implies that �k1; �k2 > 0 in Eq. (A4), and Eq. (A3).
Consider next the case when �K1 has one zero eigenvalue. Then its

other eigenvalue cannot also be zero, since then �K1 would have to be
the zero matrix, which we assume is not the case. Hence only one
eigenvalue of �K1 can be zero. But if that is true, then Det� �K1� � 0,
and the characteristic polynomial z�λ� of the system described by
Eq. (A4) reduces to

λ2�λ2 � � �g2 − �k1 − �k2�� � 0 (A10)

with a double root at λ � 0. Thus the system described by Eq. (A4) is
unstable and has a polynomial-type instability no matter what value
of �g is chosen. Hence, no gyroscopic stabilization is possible of an
unstable potential system in which the matrix �K1 has one zero
eigenvalue. Hence, for the unstable potential system to be
gyroscopically stabilized, we require that

�i� �K1 > 0; and

�ii� �g2 � �k1 � �k2 � 2

������������������
Det� �K1�

q
� �δ2; for some �δ ≠ 0 (A11)

Note that in Eq. (A4), an interchange of �k1 and �k2 in matrix �K1

leaves the conditions given in Eq. (A11) unchanged.
The “only if” part of the result follows directly by using the two

conditions [Eqs. (A1) and (A2)] in equation Eq. (A6).
Finally,when �k1 � k, �k2 � 1, and �g � g as in Eq. (9), inwhich the

dots refer to differentiation with respect to the scaled time τ, the
second of these relations gives

g2 � 1� k� 2
������������������
Det�K1�

p
� δ2; for some δ ≠ 0 (A12)

This completes the proof. □
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